Diffusion of Scientific Argumentation

Louise Dupuis de Tarlé, Gabriella Pigozzi and Juliette Rouchier

LAMSADE - Université Paris Dauphine louise.dupuis@dauphine.eu gabriella.pigozzi@lamsade.dauphine.fr juliette.rouchier@lamsade.dauphine.fr August 2021 : **210,183** publications and pre-publications on Covid-19. \rightarrow political importance of science and argumentative nature.

Goal : Use Abstract Argumentation to model :

- the construction of scientific discourse
- the diffusion of scientific information

Ioannidis, J. P., Salholz-Hillel, M., Boyack, K. W., Baas, J. *The rapid, massive growth of COVID-19 authors in the scientific literature.* Royal Society open science, 2021.

- 1. Context and Motivations
- 2. The Model
- 3. Some preliminary results
- 4. Conclusion

Context and Motivations

- \bullet Opinion diffusion = modelling how people change their minds
- $\bullet\,$ Deffuant model, where opinions are between 0 and 1
- \longrightarrow No precision on the exact process to change opinion : argumentation ?
- \longrightarrow No notion of truth in most classical models.

Deffuant, G., Huet, S., Amblard, F.. An individual-based model of innovation diffusion mixing social value and individual benefit. American Journal of Sociology, 2005.

- **Social Epistemology** is concerned with how to model communities of agents who are looking for the "truth", or knowledge defined as justified beliefs.
- Truth = successful representation of the environment or successful strategies

 \longrightarrow Truth is of great importance in democracy : to make informed decisions

 \longrightarrow Model of scientific communities : a good example of an epistemic community.

Goldman, A.I. Knowledge in a Social World. 1999.

Example : Using Zollman Networks

- What about non-scientific agents ? (e.g. policy makers)
- What happens if other interests try to disrupt or bias the production of science ?

Figure 1: Example of Bayesian updating in a Zollman network

 \longrightarrow We would like to study similar dynamics.

O'Connor, C., Weatherall, J. The Misinformation Age. .

Abstract Argumentation Theory

Arguments are abstract: no content is analyzed

- A : Earth is at the center of the universe.
- B : Galileo's observations contradict the geocentric model.
- C : Ptolemy's geocentric model allows us to predict the positions of the stars with accuracy.
- D : Copernicus' heliocentric model is simpler and more precise.

Dung, P. M.. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial intelligence 1995. Can we use Abstract Argumentation to model the construction of scientific discourse and the diffusion of scientific information ?

- Model scientists
- Model laypeople and medias

The Model

The Euler based semantic

Let x be an argument of a bipolar AAF, and *Att* the set of the direct attackers of x, *Supp* the set of its direct supporters. Then the degree of acceptability of x is :

$$V_{x} = 1 - rac{1 - 0.5^2}{1 + 0.5e^{\sum_{s \in Supp} V_s - \sum_{a \in Att} V_a}}$$

Issue Oriented Argumentation Graph (IOAG)

Each argument is part of a path towards the **issue** of the graph. The issue is the main question of the debate.

The value of the graph is the value of the issue.

Issue Oriented Argumentation Graph (IOAG)

Each argument is part of a path towards the **issue** of the graph. The issue is the main question of the debate.

The **value** of the graph is the value of the issue.

Issue Oriented Argumentation Graph (IOAG)

Each argument is part of a path towards the **issue** of the graph. The issue is the main question of the debate.

The **value** of the graph is the value of the issue.

 $V_P \approx 0.48$ $V_1 \approx 0.41$ $V_2 \approx 0.59$

- 1. Choice of one argument.
- 2. **Experiment** \longrightarrow attack or support + strength of the argument.
- 3. **Publish** the argument.
- 4. Other agents can **endorse** it with a fixed probability p_{accept} . \rightarrow Opinions change dynamically.

Argument Generation

- Sample result : strength of the argument.
- If within the defined interval : support else attack.

 $\begin{array}{l} \textbf{Strong arguments:} \\ \longrightarrow \text{Weaker attacks, stronger} \\ \text{supports} \end{array}$

Argument Generation

- Sample result : strength of the argument.
- If within the defined interval : support else attack.

 $\begin{array}{l} \textbf{Strong arguments :} \\ \longrightarrow \text{Weaker attacks, stronger} \\ \textbf{supports} \\ \textbf{Weak arguments :} \\ \longrightarrow \text{Stronger attacks, weaker} \\ \textbf{supports} \end{array}$

• Collective Epistemic Success

- Collective Error : Distance between the outcome of the *PG* and the strength of the issue.
- Average of Errors : Average of the distance between the opinion of agents and the strength of the issue.

• Opinion Diversity

• Standard deviation of the agent's opinions.

Some preliminary results

Results with a previous model

Figure 2: Example of trees generated by the protocol

Results with a previous model

Figure 3: Results of the simulations

Conclusion

- Theoretical model
- Improvement on a previous model

Future Works

- Implement the model
- Define new classes of agents : laypeople, medias, biased scientists.