Multiagent Dynamics of Gradual Argumentation Semantics

Louise Dupuis de Tarlé¹, Elise Bonzon² and Nicolas Maudet³

- 1 LAMSADE Université Paris Dauphine louise.dupuis@dauphine.eu
- 2 LIPADE Université Paris Cité elise.bonzon@u-paris.fr
- 3 LIP6 Sorbonne Université, CNRS nicolas.maudet@lip6.fr

- Abstract argumentation is a way of representing abstract arguments as networks
- Several functions have been developed to compute the strength of such arguments \rightarrow Gradual Semantics

If agents indeed reason and interact using some gradual semantics, together with some protocol, how will debates and agents opinion evolve?

 \Rightarrow Normative point of view, but inspired by online debates.

Amgoud, L., Ben-Naim, J., Doder, D., & Vesic, S. Acceptability semantics for weighted argumentation framework. IJCAI 2017.

Agent polarization through exchange of arguments

Banisch, S., Olbrich, E. An Argument Communication Model of Polarization and Ideological Alignment. JASSS 2021.

Abstract Argumentation in Opinion Diffusion

Butler, G., Pigozzi, G., Rouchier, J. *An opinion diffusion model with deliberation*.. 20th International Workshop on Multi-Agent-Based Simulation 2019.

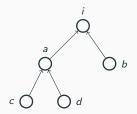
Taillandier, P., Salliou, N., Thomopoulos, R. Introducing the Argumentation Framework Within Agent-Based Models to Better Simulate Agents' Cognition in Opinion Dynamics: Application to Vegetarian Diet Diffusion.. JASSS 2021.

- 1. Abstract argumentation theory
- 2. The protocol
- 3. Simulation Results
- 4. Conclusion

Abstract argumentation theory

Abstract Argumentation Theory

- Arguments are abstract: no content is analyzed
- $AF = \langle \mathcal{A}, \mathcal{R} \rangle$, where
 - ${\mathcal A}$ is a finite and non-empty set of arguments
 - $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ is an attack relation

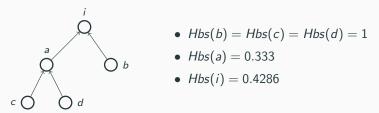


Dung, P. M.. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial intelligence 1995.

Gradual Semantics

- Formal methods to assess the acceptability of arguments
- Gradual semantics: quantitative way to assess arguments
- A gradual semantics associates a scoring to each argument $S: \mathcal{A} \to \mathbb{R}$

For example, with the h-categorizer semantics:



Amgoud, L., Ben-Naim, J., Doder, D., & Vesic, S. Acceptability semantics for weighted argumentation framework. IJCAI 2017.

The protocol

Issue Oriented Argumentation Graph (IOAG)

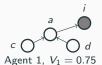
Each argument is part of a path towards the **issue** of the graph. The issue is the main question of the debate.

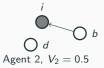
The value of the graph is the value of the issue.

The **Universe graph** contains every relevant argument of the debate:

Agents are each equipped with an **agent's graph**, subset of the universe graph

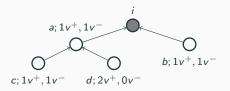
Universe graph, $V_{UG} = 0.4286$





Merged graph

The **merged graph** is a weighted argumentation framework constructed from agent' graphs, where each agent holding an argument in her AF "virtually" vote for it, while the others vote against

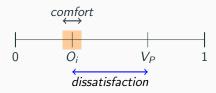


Merged graph, $V_{MG} = 0.6277$

 \longrightarrow this graph is a tool for analysing the debate

Evaluation and Strategies

Agent's goal: They want the public debate to reflect their opinion.



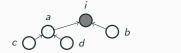
- If not comfortable : agents can play any argument which brings the V_P closer to their opinion.
- If comfortable : agents can play any argument which leaves the V_P in their comfort interval.

Dissatisfaction

The **dissatisfaction** of an agent is the distance between the agent's opinion and the value of the public graph.

- After every step, agents can "learn" arguments : add the new arguments to their opinion graphs.
- Learning is based on **confirmation bias** : agents are more likely to learn arguments which favor their opinion.
- \longrightarrow Agent's opinion changes throughout the game.

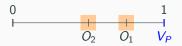
Universe Graph



Public Graph

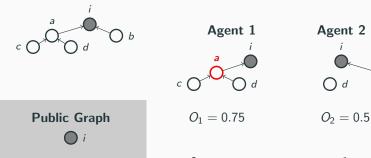
 $O_1 = 0.75$

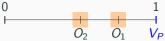
 $O_2 = 0.5$



 $V_P = 1$

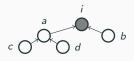
Universe Graph

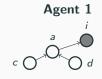


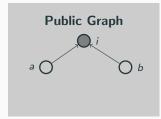


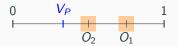
b

Universe Graph



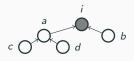


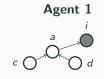


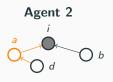


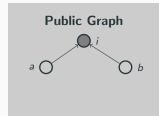
 $V_P = 0.33$

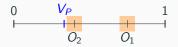
Universe Graph





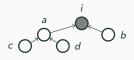


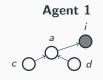


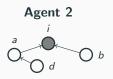


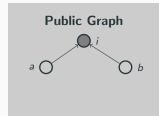
 $V_P = 0.33$

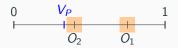
Universe Graph











 $V_P = 0.33$

Simulation Results

Hypotheses

- H1 : "Outcome" For a given debate, if the learning probabilities increase, the outcome gets closer to the merged value.
- H2 : "Flexibility" Increasing the size of the comfort zone increases the agent's satisfaction.
- H3 : "Open Mind" If the learning probability of an agent increases, she will be more satisfied at the end of the debate.
- H4 : "Strength of the Group" When many agents share the same initial information, they have a greater chance to be satisfied by the final result.
- H5 : "Power of Knowledge" Agents that know more arguments at the beginning of the game are more satisfied at the end.
- **H6 : "Convergence of Views"** The highest the learning probabilities, the lower the distance between the agent's final values.

	Variable 1	Variable 2	R	p value
H1	P_L	$ V_F - V_M $	-0,55029	2,44E-80
H2	Cl	N _C	0,680451	4,1E-137
H3	P_L	AD	-0,70346	2,1E-150
H4	Nb of Clones	AD_{clones}	-0,28678	2,19E-20
H5	$ Arg(DG_k) $	d_k	-0,40972	9,3E-38
H6	P_L	STD	-0,6683870	1,2764E-130

Table 1: Testing the hypotheses. Correlation level: Dark green = high, light green = moderate, yellow = low.

	Variable 1	Variable 2	R	p value
H1	P_L	$ V_F - V_M $	-0,0645	0,04
H2	Cl	N _C	0,604745	6,6E-101
H3	P_L	AD	-0,53363	1,39E-171
H4	Nb of Clones	AD _{clones}	-0,23606	3,94E-14
H5	$ Arg(DG_k) $	d_k	-0,40972	9,3E-38
H6	P_L	STD	-0.62242	1.8E-108

Table 2: Testing the hypotheses. Correlation level: Dark green = high, light green = moderate, yellow = low, red = no.

Conclusion

- We showed that a number of desirable hypotheses were verified.
- Our work shows that dynamics game of argumentation can be used to model the convergence of the opinion of agents.
- On the downside, one hypothesis was not verified any longer when we augment the protocol with votes, which reminds us of the importance of such seemingly minor design choices.